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The formation of compound vortices from a ‘shielded’ vortex monopole embedded
in a two-dimensional background straining flow is studied numerically. The com-
putations are performed in plane polar coordinates using an infinite radial domain
Navier–Stokes solver. The straining flow excites an azimuthal instability, leading to
vortex tripole formation in the case of small strain rates. For larger strain rates,
tripole formation proceeds briefly before the structure is destroyed by the dominant
background straining flow.

1. Introduction
The formation of compound vortex structures is now a well-known feature of

two-dimensional or quasi-geostrophic flows. Coherent vortical structures have been
observed in the oceans, the atmosphere and the laboratory. These vortices influence
the transport of passive scalars such as heat and biochemical compounds in large-scale
geophysical flows. Owing to these important effects, the dynamics of these vortices
has been studied extensively over the past two decades (Hopfinger & van Heijst 1993).

Various laboratory experiments have revealed the range of compound vortices
that can emerge in a two-dimensional flow due to the growth of instabilities of
isolated circular vortices (Carnevale & Kloosterziel 1994). This has provided a rich
phenomenology of monopoles, dipoles, tripoles, ‘triangular’ vortices, and more recently
the observation of a ‘square’ vortex (Kloosterziel & Carnevale 1999). In particular,
the development of vortex tripoles has been studied in the laboratory by van Heijst
& Kloosterziel (1989), van Heijst, Kloosterziel & Williams (1991) and Kloosterziel
& van Heijst (1991). These experiments used dye visualization to show that a stable
tripolar structure can emerge from an unstable cyclonic vortex in a rotating fluid.
It is now understood that such vortices can appear in quasi-geostrophic flows with
initially randomly distributed vorticity fields due to the spectral transfer of kinetic
energy to larger scales (McWilliams 1984).

There have been various numerical studies of the formation of compound vortex
structures. Carton, Flierl & Polvani (1989) investigated the evolution of a ‘shielded’
vortex monopole with zero circulation. This vortex consists of a circular core of posi-
tive vorticity surrounded by a shielding ring of negative vorticity (henceforth referred
to as a shielded vortex). The response of such a vortex to azimuthal perturbations
of wavenumber k = 2 was found to lead to tripole formation, provided that the
initial vorticity gradients were steep enough. Carton & Legras (1994) studied tripole
formation from a shielded vortex in greater detail. They demonstrated that the long-
time asymmetric breaking of the tripole into a dipole and a monopole is driven by
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Figure 1. Representative initial conditions for α = 3, β = 0.005, Re = 10 000. (a) Vorticity and
azimuthal velocity profiles. (b) Vorticity contours, where dashed contours indicate negative values.
Minimum contour is ωmin = −0.194 and the contour interval is ∆ω = 0.078. (c) Streamlines.

the erosion of the vortex core by stripping and diffusion. More recently, Kloosterziel
& Carnevale (1999) investigated tripole, ‘triangular’ and ‘square’ vortex formation
from shielded vortex monopoles. They derived a finite-dimensional dynamical system
which was used to model the evolution of the unstable vortex from a circular to a
compound structure. These numerical investigations employed a spectral method on
a doubly periodic Cartesian domain, with hyperviscosity used to dissipate fine-scale
enstrophy.

The behaviour of isolated stretched vortices and vortex patches in straining flows
has been studied extensively (Saffman 1992). A strain field perhaps idealizes the
leading-order distortional effect of far-field vortices in a multiple vortex flow. It is
well known that background straining flows may deform, erode or destroy two-
dimensional vortices (Legras, Dritschel & Caillol 2001 and references therein). The
results of such isolated vortex studies have been related to simulations of two-
dimensional turbulent flows, with good agreement (Jiménez, Moffatt & Vasco 1996).
The dynamics of compound vortical structures embedded in straining flows has
received less attention. However, Morel & Carton (1994) used contour surgery to
test the stability of multipolar equilibria embedded in a deformation field consisting
of rotational and straining flow parts. The multipoles were generated from unstable
piecewise-constant vortex monopoles using monochromatic azimuthal perturbations,
with zero background strain.

In this paper, we present a numerical study of the evolution of a shielded monopolar
vortex embedded in a two-dimensional irrotational biaxial background straining flow.
We investigate the effect of a range of strain rates at a single Reynolds number.
Our study is focused on the initiation of instability, the formation of compound
vortex structures and their intermediate-time evolution. An integrated picture of the
unfolding of the instability is presented, rather than an investigation of possible
long-time steady states.

2. Two-dimensional isolated circular vortices
2.1. Initial vorticity profile

Carton & Legras (1994) and Kloosterziel & Carnevale (1999) investigated the stability
of shielded monopolar vortices with an initial vorticity profile of the form

ωα(r) = ω0

[
1− 1

2
α
( r
δ

)α]
exp(−(r/δ)α), (2.1)



Unstable circular vortex in straining flow 33

where α and ω0 determine the shape and amplitude of the profile and δ is a reference
length scale. The corresponding azimuthal velocity is vα(r) = 1

2
ω0r exp(−(r/δ)α), so

that the flow is everywhere counter-clockwise. The vorticity and azimuthal velocity
profiles are shown in figure 1(a) and the vorticity contours in the (x, y)-plane are
shown in figure 1(b). For α > 0, all of the vorticity profiles have an inflection point.

These isolated vortices have zero circulation, such that
∫ 2π

0

∫ ∞
0
ω(r, θ, t)r dr dθ = 0. As a

necessary condition for instability, Rayleigh’s inflection point theorem requires dω/dr
to change sign somewhere, as demonstrated by Drazin & Reid (1981). For vortices
with zero circulation, dω/dr always changes sign somewhere if ω is continuous. We
then define the initial shielding ring radius as

rs = (1 + 2/α)1/α. (2.2)

This is the radial location at which dω/dr = 0, corresponding to the position of
maximum negative vorticity.

For small enough α > 0, these vortices are stable. As α is increased, the vorticity
profiles become steeper. Kloosterziel & Carnevale (1999) solved an eigenvalue problem
using the method of Gent & McWilliams (1986) to obtain the growth rates of the
most unstable azimuthal modes as a function of α. They found that for approximately
α > 1.85, the shielded vortex first becomes unstable to perturbations of azimuthal
wavenumber k′ = 2. They subjected the shielded vortex given by (2.1) to initial
vorticity perturbations of the form

ω′α(r) = µ cos(k′θ) exp

[
−(α(r/δ)α − 2)

2

2σ2

]
, (2.3)

where µ and σ are parameters used to adjust the amplitude and distribution of the
disturbance. They found that perturbations with k′ = 2 resulted in the formation of
a tripolar vortex.

In this study, we employ the vorticity profile (2.1) with α = 3 as the initial condition.
In § 4.2 the shielded vortex is subjected to perturbations of the form (2.3) with µ = 0.1,
σ = 0.25 only as a reference scenario in the case of zero background strain.

2.2. Background straining flow

In this paper, we embed the shielded vortex in a two-dimensional irrotational biaxial
background straining flow given by

us(x, y) = −βxî + βyĵ . (2.4)

Here β is a constant strain rate. On converting to plane polar coordinates the strain
field is then

us(r, θ) = −βr cos(2θ)r̂ + βr sin(2θ)θ̂. (2.5)

It is clear from (2.5) that the two-dimensional background straining flow introduces
azimuthal wavenumber k = 2 velocity variations. The full velocity field u can be
written as the sum of the velocities induced by the vortex, v, and the background
straining flow, us, as

u(r, θ, t) = v(r, θ, t) + us(r, θ). (2.6)

Figure 1(c) shows initial streamlines for the velocity field (2.6) with α = 3, β = 0.005.
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2.3. Scaling

Following Moffatt, Kida & Ohkitani (1994), we define a reference length scale δ and
a reference time scale 1/ω0. Anticipating that, even in the case of biaxial strain, the
maximum velocity in the vicinity of the vortex is of order δω0, we introduce the
dimensionless variables

r∗ = r/δ, β∗ = β/ω0, ψ∗ = ψ/(δω0). (2.7)

A Reynolds number based on the reference length and time scales can then be defined
as

Re = δ2ω0/ν, (2.8)

where ν is the kinematic viscosity.

2.4. Governing equations

The two-dimensional vortex-induced flow considered has uni-directional vorticity

ω = ω(r, θ)k̂, such that v = v(r, θ) is the vortex-induced velocity in the (r, θ)-
plane. Upon introducing the dimensionless variables (2.7) and dropping the stars, the
vorticity transport equation is then simplified to

∂ω

∂t
+ ∇ · (uω) =

1

Re
∇2ω, (2.9)

where ω = ∇ × v. All quantities are now considered to be dimensionless. As before,
u = v+us. The fluid is incompressible, so a stream function ψ(r, θ, t) can be associated
with the vortex-induced v motion,

∇2ψ = −ω. (2.10)

The velocity field derived from the stream function is then

v =
1

r

∂ψ

∂θ
r̂ − ∂ψ

∂r
θ̂. (2.11)

3. Numerical solution
We solve (2.9) and (2.10) numerically in plane polar coordinates with an infinite

radial domain, subject to the initial and boundary conditions on the vorticity field
given by

ω(r, θ, t = 0) = ωα(r), (3.1)

ω(r →∞, θ, t)→ 0, t > 0. (3.2)

Here the initial condition is given by the radial vorticity profile (2.1) with α = 3.
The hybrid spectral finite-difference method developed by Buntine & Pullin (1989) is
employed. We represent ω and ψ as

ω(r, θ, t) =

Nθ/2−1∑
k=−Nθ/2

ω̂k(r, t)e
ikθ and ψ(r, θ, t) =

Nθ/2−1∑
k=−Nθ/2

ψ̂k(r, t)e
ikθ, (3.3)

where r ∈ [0,∞), θ ∈ [0, 2π) and Nθ is the azimuthal truncation parameter. Here ω̂−k =
ω̂k and ψ̂−k = ψ̂k , where the overline indicates complex conjugation. Substitution of
the truncated Fourier series (3.3) into (2.9) and (2.10) yields evolution equations for
the Fourier coefficients ψ̂k and ω̂k , where k = − 1

2
Nθ . . .

1
2
Nθ − 1.
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There are two steps involved in the calculation: the solution of the Poisson equa-
tion and time advancement. The Poisson equation (2.10) gives Nθ linear ordinary
differential equations in r for the Fourier coefficients ψ̂k . These were solved on the
domain [0, 1) obtained by an algebraic coordinate mapping

r = Lζ/(1− ζ), (3.4)

which maps r ∈ [0,∞) onto ζ ∈ [0, 1), where L is a stretching parameter. This
is different to the trigonometric mapping used by Buntine & Pullin (1989). The
stretched equations were solved numerically using fourth-order finite differences at Nr

radial nodes, where r-derivatives are related to ζ-derivatives on the uniform grid by
appropriate metrics. The boundary condition ψ̂k(ζ → 1, t) = 0 was employed. For a
detailed discussion of the boundary conditions on ψ̂k(ζ = 0, t), the reader is referred to
§ 2 of Buntine & Pullin (1989). Once the ψ̂k are known, the non-axisymmetric velocity
field is constructed using (2.11). Then, using the vorticity transport equation (2.9), the
ω̂k were advanced in time using a predictor-corrector scheme. The asymptotic results
of Robinson & Saffman (1984) for a Burgers vortex embedded in a non-symmetric
strain field were used to validate the code.

4. Results and discussion
4.1. Vorticity contours and streamlines

Figures 2 and 3 show the evolution of the vorticity contours and streamlines for the
shielded vortex (2.1) with α = 3 and Re = 10 000, for background strain rates in the
range 0.005 6 β 6 0.050. In all cases, Nr = 256, Nθ = 512, L = 1.0 and the time step
∆t = 0.01.

Figure 2(a) shows that for β = 0.005, the azimuthal wavenumber-2 velocity vari-
ations provided by the background strain field cause the initially circular vortex to
develop into a tripolar vortex. The corresponding streamlines are shown in figure 2(b).
The initial streamlines resemble a cat’s-eye structure, in which positive and negative
vorticity is confined to an interior region of nearly circular streamlines between the
two stagnation points. Since the stagnation points on the separatrices penetrate the
shielding ring, some negative vorticity exists outside the cat’s eye. We then expect that
in addition to viscous diffusion, some erosion of the negative vorticity will result from
the passive transport of vorticity by the background strain field. Initially, the emerging
tripole satellites are aligned with the y-axis, the axis of maximum extensional strain.
At t = 40, the streamlines show the presence of four saddles. Two of these are con-
nected with separatrices encircling the vortex core, forming a distorted cat’s eye. As
the negative-vorticity satellites emerge, they entrain positive-vorticity from the core.
A large elliptical deformation of the positive-vorticity core is evident at t = 60 and
by t = 80 filamentary spiral arms appear. The tripole then exhibits oscillations (not
shown), in which the spiral arms are shed from the core. These arms are stretched
by a combination of the background strain and interactions with the satellites. Parts
of the arms rejoin the core, but some portions of them cross the cat’s-eye separatrix,
are transported away by the strain and are subsequently diffused. These features are
very similar to those of the tripoles in the numerical simulations of Carton & Legras
(1994) and Kloosterziel & Carnevale (1999).

The number of orbits executed by the satellites, NO is shown on the frames in
figure 2(a). By time t = 300, 2.34 orbits of the core have been completed. As pointed
out by a referee, this represents only a few units of the characteristic inertial time
for the tripolar vortex. The maximum vorticity ωmax(t) at r = 0 is also shown on
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Figure 2. Evolution of a shielded vortex with α = 3 and Re = 10 000. Contours of vorticity and
stream function for (a, b) β = 0.005, (c, d ) β = 0.010. Vorticity contour levels are the same as in
figure 1(b). Radial grid spacing in the frames varies between ∆rmin = 0.004 and ∆rmax = 0.149. The
chain dashed curves on the initial streamline plots indicate the radial positions where the azimuthal
velocity is within ±5% of the azimuthal component of the imposed strain field. ωmax is the vorticity
at r = 0 and NO is the number of orbits executed by the satellites.

the frames. Initially, ωmax(0) = 1 and the value at later times provides a measure of
the erosion of the positive-vorticity core. As noted by Carton & Legras (1994), the
core is continuously and irreversibly eroded during each cycle of spiral arm shedding.
By t = 300, the maximum vorticity has decreased to ωmax = 0.858. For comparison,
a purely diffusive simulation in the absence of a background straining flow and
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instability (not shown) gives ωmax = 0.880 by t = 300. This erosion must continue in
the absence of a vorticity-intensifying stretching strain. The combined effect of the
core erosion and the passive transport of negative vorticity from the tripole may lead
to different long-time behaviour. Therefore, the tripole structure at t = 300 should be
viewed as an intermediate-time state.

Figure 2(c, d ) shows the evolution of the shielded vortex for β = 0.010. The increase
in streamline density indicates that the background straining flow is becoming more
dominant. However, tripole formation proceeds and by t = 60 the positive vortex core
is surrounded by two satellites. At t = 80, these satellites are much deformed in shape
compared to the β = 0.005 satellites at the same time. The filamentary spiral arms
are also shorter in length and smaller in vorticity magnitude. By t = 300, the vortex
core is slightly less eroded than it was at the same time in the β = 0.005 simulation.
The satellites have partially merged around the core and the saddles associated with
the satellites have vanished.

For the larger strain rate β = 0.020, figure 3(a, b) shows that the stagnation
points penetrate the shielding ring of vorticity further. Tripole formation proceeds
briefly, but before the satellites can properly form, they become elongated and are
transported away by the background strain. The combined effect of the strain and
the wind-up of the satellites by the core causes the negative vorticity contours to be
folded into a complex structure. By t = 200, the strain has stripped away most of the
negative vorticity, leaving a core which is confined to the cat’s eye. The streamlines
retain the cat’s-eye structure throughout the evolution, although they are distorted at
intermediate times.

The largest strain case, β = 0.050 is shown in figure 3(c, d ). Here most of the initial
negative vorticity lies outside the cat’s eye. The strong strain suppresses tripole forma-
tion and the stripping of negative vorticity from the shielding ring begins immediately.
Spiral arms develop and these move into regions where they are transported away by
the action of the strain. By t = 80, only the positive-vorticity core and a small residue
of negative vorticity remains, while the maximum vorticity decreases to ωmax = 0.978.
The core is confined to a cat’s eye region of elliptical streamlines. This is reminiscent
of the results of Prochazka & Pullin (1998), who studied the behaviour of a stretched
Burgers vortex in a non-symmetric strain field, parameterized by a strain ratio, λ.

The total circulation in the simulations shown in figures 2 and 3 must remain
zero. For the weak strain rates β = 0.005 and β = 0.010, any negative vorticity
stripped from the shielded vortex was diffused to small values before it could be
transported into regions of coarse grid resolution far from the origin. Numerical
problems were avoided and the total circulation remained zero. For the stronger
strain rates β = 0.020 and β = 0.050, stripped vorticity was transported intact into
the far field. This caused the calculations to become under-resolved by t = 200 and
t = 100 respectively. Data collection ceased at these times.

4.2. Flow diagnostics

Figure 4 shows the time histories of flow diagnostics obtained during the simulations
shown in figures 2 and 3. Figure 4(a) shows the evolution of the satellite core
separation, dc(t), which is the distance between the two largest negative values of
vorticity in the flow field. All the curves intercept the dc-axis at dc(0) = 2rs = 2.3713,
where rs is the initial radius of the shielding ring from (2.2). The evolution of the
shielded vortex excited with perturbations given by (2.3), but with zero background
strain is shown as a bold line for reference. The bold dotted curve shows the evolution
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Figure 3. Evolution of a shielded vortex with α = 3 and Re = 10 000. Contours of vorticity and
streamfunction for (a, b) β = 0.020, (c, d ) β = 0.050. Vorticity contour levels are the same as in
figure 1(b). ωmax is the vorticity at r = 0. See figure 2 for an explanation of the chain dashed curves
and radial grid spacing.

of the shielding ring diameter for a purely diffusive simulation, in the absence of strain
or any instability.

Comparing the β = 0 curve to the pure diffusion curve, we see that there is a
faster-than-diffusive growth in dc during the tripole satellite formation process. This
ends at approximately t = 150 and the dc growth rate starts to relax to the pure
diffusive rate, although small oscillations are caused by the presence of the satellites.
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Figure 4. Time history of flow diagnostics for α = 3 and Re = 10 000. (a) Tripole satellite core
separation dc, as defined in the inset. (b) Circulation contained in the cat’s eye, Γcat. The insets
show the cat’s-eye separatrix in bold overlaying the vorticity contours at the times indicated on
the β = 0.010 curve. The initial circulation contained in the positive-vorticity core of the shielded
vortex is Γ+ = 1.2309. The legend shown in (a) applies to both graphs.

For the weak strain cases, we make a similar observation about the initial growth of
dc. Subsequent oscillations are due to the alternating alignment of the satellites with
the axes of maximum stretching and contracting strain as they orbit the vortex core.
The amplitude of these oscillations grows as the strain rate is increased. However,
a faster-than-diffusive dc growth rate is observed in both cases beyond t = 150.
The mechanism of this effect is not completely understood. Carton & Legras (1994)
showed that the transport of positive-vorticity filaments away from the core of a
tripole and their subsequent diffusion leads to an increase in dc through conservation
of angular momentum. Perhaps this effect, combined with or enhanced by the passive
transport of vorticity by the background strain field, is responsible for our faster-
than-diffusive observation. If this effect persists in the case of weak strain, then the
satellites would begin to move into regions of coarse grid resolution. This would
lead to under-resolved calculations and a search for long-time steady states would be
difficult. For the stronger strain rates β = 0.020 and β = 0.050, the negative-vorticity
shielding ring is so rapidly stripped away by the background strain that distinct
tripole satellite cores are no longer identifiable beyond t = 50.

Figure 4(b) shows the circulation contained within the cat’s eye, Γcat, obtained by
integrating the vorticity field over the region bounded by the cat’s-eye separatrix.
The initial Γcat is determined by the depth to which the stagnation points on the
cat’s-eye separatrix penetrate the shielding ring. Increasing the strain rate excludes
more negative vorticity from the cat’s eye. The initial circulation contained in the
positive-vorticity core of the shielded vortex is Γ+ = 1.2309.

For the strain rates β = 0.005 and β = 0.010, a large increase in Γcat begins around
t = 25. This is related to the elliptical deformation of the core, the onset of mode-2
instability and the transfer of negative vorticity from the cat’s eye into the satellites.
Γcat peaks around t = 60, when tripole satellite formation is complete. Subsequent
oscillations in the Γcat curves are caused by the flux of vorticity into and out of the
cat’s eye. This is due to the time variation of both the spatial vorticity distribution
and the shape of the cat’s eye. These effects are most clearly shown in the insets of
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figure 4(b) for β = 0.010. As the strain stretches the satellites, they begin to elongate
into arms. The positive core winds up the negative-vorticity arms, entraining them
into the cat’s eye. The insets show that the cat’s-eye separatrix changes shape and
area as the arms are wound up, resulting in a decrease in the circulation contained
within. As the spiral arms begin to merge around the core, the cat’s eye changes
shape again and expels some negative vorticity, resulting in an increase in Γcat.
Figure 2 shows positive-vorticity spiral arms crossing the cat’s-eye separatrix. This
phenomenon also contributes to the time-varying vorticity flux, since the spiral arms
are partially entrained back into the cat’s eye at later times. The cycle described above
is repeated, although the maximum amplitude of Γcat decreases with time. This decay
is due to viscous diffusion and the transport of vorticity across the stagnation points
by the background straining flow.

For the larger strain rates β = 0.020 and β = 0.050, the shielding ring is rapidly
stripped away. Smaller oscillations in the value of Γcat result from a reduction in
the initial negative vorticity contained within the cat’s eye and less distortion of the
cat’s-eye separatrix.

A convenient measure of the amplitude of the Fourier coefficients ω̂k from the first
of (3.3) is Ak(t), where

A2
k(t) = 2π

∫ ∞
0

ω̂k(r, t) ω̂k(r, t) r dr. (4.1)

Figure 5(a) shows the evolution of the mean and azimuthal components of Ak for the
shielded vortex excited with perturbations given by (2.3), but with zero background
strain. This corresponds to the bold line in figure 4(a). Here ‘mean’ indicates the
axisymmetric mode k = 0 and ‘azimuthal’ indicates the sum of the non-axisymmetric
modes k > 1. After some initial delay, there is a rapid increase in the amplitude of the
azimuthal component, associated with the emergence of fine scales. This component
is only larger in amplitude than the mean for a short time. Oscillations in the
amplitudes of both components subsequently decay. Figure 5(b) shows the evolution
of the two components for β = 0.005. In this case, the biaxial strain field initiates
the instability. Here more dynamical behaviour is observed, since the amplitude of
the oscillations in the azimuthal part do not decay. The insets show the spatial
vorticity distribution at representative local minima and maxima in the amplitude of
the azimuthal component. For the minima and maxima, the satellites are aligned with
the axes of maximum contracting and stretching strain respectively. At the maxima,
the satellites are less elliptical in shape compared to those of the minima and a
larger elliptical deformation of the core is evident. A local maximum in the azimuthal
component results, since the vorticity field is more non-axisymmetric at this time.

5. Conclusions
We have numerically studied the formation of compound vortices from a shielded

vortex embedded in a two-dimensional straining flow for strain rates in the range
0.005 6 β 6 0.050, at Re = 10 000. The strain field provides an azimuthal
wavenumber-2 velocity variation which excites an instability leading to vortex tripole
formation for small β. Diffusion and the passive transport of vorticity by the back-
ground strain field constantly erode the tripole. This may cause different long-time
tripole behaviour, so the present results should be viewed as intermediate-time states.
For large β, nearly complete stripping of the negative-vorticity shielding ring is
observed, resulting in a compact positive vortex in the case β = 0.050.
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Figure 5. Evolution of the amplitudes of the modes Ak for α = 3 and Re = 10 000. (a) β = 0, with
instability excited with a vorticity perturbation described by (2.3). Modes A2 and A4 account for
43% and 13% of the azimuthal curve respectively at the time of the first peak, t = 87. (b) β = 0.005.
The solid circles on the azimuthal curve represent the times at which vorticity contours and stream
function were shown in figure 2(a, b). The insets show the vorticity contours at the times indicated
by the open diamond and triangle. Modes A2 and A4 account for 42% and 12% of the azimuthal
curve respectively at the time of the first peak, t = 72.

When β 6 0.010, the amplitude of oscillations in the core separation between
the tripole satellites becomes larger with increasing strain rate. Comparison with a
purely diffusive simulation shows that the tripole satellite core separation grows at a
faster-than-diffusive rate. The streamline patterns retain a cat’s-eye structure during
the evolution for all the strain rates investigated. A study of the time history of
circulation contained within the cat’s eye reveals a time-varying flux of vorticity into
and out of the cat’s eye. This is due to the time dependence of the spatial vorticity
distribution and cat’s-eye shape. Finally, the vorticity field is found to be more
non-axisymmetric when the tripole satellites are aligned with the axis of maximum
extensional strain rate.
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